Sustainable CSE Software Engineering and Support:
Lessons Learned from the Trilinos Project

Michael A. Heroux*, Sandia National Laboratories
April 2009

Introduction

The Trilinos Project is nearly ten years old and has grown from the initial “grand”
plan of three equation solver packages (thus the “tri” in Trilinos) to now contain
approximately 50 packages whose functionality covers much of the enabling
capabilities needed to construct a scalable computational science and engineering
(CSE) application. Trilinos is an open source project with more than 3,500
registered users worldwide, 2,000 of which are at universities. Trilinos is the
scalable library foundation for most applications at Sandia National Laboratories
and is increasingly used in the same way by many other CSE applications.

From the beginning of the Trilinos Project, we have invested in software
engineering practices and tools with the intent to elevate the quality and
maintainability of our software for the long-term future. Our guiding principle is
this:

We carefully invest in software engineering so that we can spend less time writing and
maintaining software, and more time computing science and engineering results.

Our approach is pragmatic and measured, realizing that we need to continue CSE
research while at the same time gradually improving our software engineering
efforts.

General Observations

The Trilinos Project grew out of several observations about existing CSE software
efforts at Sandia and elsewhere. Specifically:

1. Small teams are natural: Single-physics CSE applications and library software
efforts naturally involve a small team of researchers who work closely with each
other on a daily basis.

2. Unneeded redundancy is a risk: These small team efforts often require—and
redundantly develop if left alone—similar basic functionality. This basic
functionality can come in the form of /0O functions, interfaces to basic libraries

or the creation in one library of

* Sandia is a multiprogram laboratory operated by Sandia an inferior service capability, e.g.,
Corporation, a Lockheed Martin Company, for the United linear solvers. which are

States Department of Energy’s National Nuclear Security .
Administration under contract DE-AC04-94AL85000. available as state of the art



capabilities in another library that should have been leveraged.

3. Large-scale projects are compositions of small teams: Advanced CSE projects
require a coordinated effort of dozens or more researchers who, although
contributing to a larger effort, continue to work in small teams on their portion
of the project.

4. Advanced research needs advanced software: Pre-existing, high-quality
software is increasingly required in order to perform advanced research. For
example, to perform research in large-scale optimization or uncertainty
quantification we need scalable data classes and scalable linear and nonlinear
solvers, and all of these capabilities must work together seamlessly.

A Federalist Approach

The Trilinos project uses a kind of “federalist” approach to addressing these
competing realities. We have formally defined a “package” to be a collection of
related functionality developed by a small team with certain rights and
responsibilities in the larger Trilinos framework.

This basic approach has enabled a great deal of local autonomy in decision-making,
allowing us to tolerate and appreciate a variety software engineering styles and
team cultures. We can handle modest redundancy in software functionality (that is
gradually eliminated based on the merit of competing approaches) and can adapt to
change in many ways. At the same time, this approach also provides a global
interaction that promotes a variety of desirable outcomes: (i) cross-fertilization of
ideas, techniques and tools across package teams, (ii) adoption of “best practices”
from one package across other packages, (iii) fostering of trust among disparate
groups (iv) software modularity that is naturally enforced by package and team
boundaries and (v) well-defined interfaces between packages for interoperability.

Importance of Software Excellence Emphasis

One important factor that improves the effectiveness of the Trilinos architecture is
the constant focus on improving software engineering practices and processes. This
focus has two major impacts on our efforts: (i) better software engineering in the
project makes for better software, so that package teams are willing to use each
other’s software and (ii) discussions of incompatibilities in practices and processes
across packages can focus on the goal of determining best practices and not decay
into expressions of personal preference that can be contentious and counter-
productive. It is worth noting, that we selectively adopt practices from the larger
software engineering community only when deemed to be useful to us, doing so in a
timely manner.



The net result of this approach to software development is a large and growing
collection of inter-related tools where Trilinos as a whole has an identity but, even
more importantly, each package has its own identity within its community of
interest. Furthermore, even though our software base has grown extensively, our
overall support costs have remained essentially constant because of the payoffs
from better software engineering practices.

On-going Software Support

Perhaps the most challenging task in CSE software development is the maintenance

of existing software. In our experience, maintenance challenges are of two types:

1. Maintenance of actively developed software: In this situation, maintenance is
often easy to perform and fund because development due to maintenance issues,
and development related to new software features can be done simultaneously.
As long a software project is actively developed, we have not found maintenance
a major problem. However, proper support staffing (see below) is needed.

2. Maintenance of mature “legacy” software: Mature legacy software that is
popular and used but minimally developed, or not actively developed at all, is
the most challenging type to maintain. Particularly challenging is the situation
where minor refactoring is required—say to support new architectures or non-
research software features—that in turn requires ubiquitous changes. Research
funding cannot typically be used to perform this maintenance so it either is not
done, or is done for a commercial customer who pays for the work and is
therefore the owner of the best version of software, leaving the open community
with a lower quality version.

Persistent CSE Software Support Staffing

Most CSE software development is done by highly trained domain scientists who
have to do some amount of low-level programming as part of their work. At the
same time, we have found that support staff members are essential for a sustainable
software project. These members of the team should be long-term project
members, providing continuity even if research staff members such as students and
post-docs depart.

There are two basic support staff roles:

1. Software Engineering Tools Support: Responsible for use and support of
software tools such as source management, issue tracking, websites, etc.

2. Technical Software Development: Responsible for software development that
is needed to provide software refactoring of a technical nature, such as
introducing a new parallel programming approach into existing software.



We have found it easier to justify the first type of support staffing than the second,
but they are equally important.

Increasing the Priority of Software Engineering and Support

In our experience, the broad CSE community is largely unaware of formal software
engineering concepts and practices, and in fact has a negative opinion if any. The
Trilinos Project team would probably have a similar attitude but for the fact that
some of our important funding is explicitly connected to demonstrating software
quality and participating in software quality assessments. Simultaneously these
same funding sources provide resources for focusing on software engineering,
allowing us to hire dedicated personnel who are primarily focused on software
engineering and not on CSE research.

Finally, it is very important to carefully incorporate software engineering principles
and practices into CSE software efforts. In particular, we have found that blind
adoption of standard industry practices is not a good approach and is largely
responsible for the existing negative opinion of formal software engineering in the
CSE community. Furthermore, it is very important to provide educational
opportunities for CSE researchers to learn about basic software engineering
concepts and to support ongoing educational opportunities.

Conclusions

Traditionally CSE software engineering and support efforts have been considered to
be outside the scope of CSE research funding. However, in our experience these
efforts are essential elements of a full-fledged CSE research program. They are not
overhead or luxuries, but instead free up research staff to do more research by
providing software engineering expertise to domain scientists, and ultimately
allowing highly trained domain scientists to be more focused on CSE research.
Furthermore, some areas of CSE research fundamentally require high quality CSE
software upon which to build. These research areas are off-limits to CSE
researchers without a stable and supported CSE software base. Finally, an increased
focus on software engineering and support requires explicit funding and staffing,
and requires education of CSE researchers in software engineering topics.



